# EBAF update: surface fluxes

Seiji Kato, Norman G. Loeb, Fred G. Rose, and Ryan C. Scott

NASA Langley Research Center

CERES Science team meeting October 12-14, 2021





## EBAF (surface) Edition 4.2

- EBAF is a climate data product and producing surface fluxes with no GEO artifacts are important
  - GEO artifacts: temporal discontinuities caused by different GEOs used over the course of the time series and spatial discontinuities among GEOs used at the same time.
  - Climatology adjustment allows us to use Terra only, Terra+Aqua, and NOAA-20 only.
  - SYN1deg will be processed with clouds derived from Terra and Aqua only (SYN1degnoGEO)
  - No cloud reprocessing, i.e. Terra and Aqua cloud properties will be derived using GEOS-5.4.1
  - MERRA-2 temperature and humidity profiles will be used throughout the record
    - Surface longwave fluxes are directly affected by temperature and humidity discontinuities in GEOS-5.4.1 while geo artifacts are much larger than cloud property discontinuities caused by GEOS-5.4.1.
- Emphasis of Edition 4.1 SYN1deg (Terra+Aqua+GEOs) is surface irradiances with high temporal resolution and diurnal cycle.

## Terra+Aqua cloud properties

- Daytime and nighttime cloud properties (fraction, optical thickness, phase, top and base pressures) are interpolated separately for each grid box.
- Monthly mean cloud properties before the first observation in the month and after the last observation in the month



## Pre-process analysis

- GEO artifacts are taken out but does Terra+Aqua no GEO product provide realistic regional trends?
- We use climatologically adjusted Aqua SYN1deg (fluxes are computed with Aqua clouds and climatology is adjusted to that of Terra+Aqua+GEOs) processed with GEOS-5.4.1 in this presentation to demonstrate the SYN1deg noGEO product.

# Global downward surface longwave flux comparison: Edition 4.1 EBAF (Terra+Aqua+Geo) vs. climatologically adjusted Aqua only

Global monthly anomalies of downward longwave irradiance

GEO artifacts introduce ~1Wm $^{-2}$ , which is equivalent to ~1 $\sigma$ 



# Surface net longwave irradiance trend (Wm<sup>-2</sup> dec<sup>-1</sup>) 200208 to 202002, positive downward



# Surface net shortwave irradiance trend (Wm<sup>-2</sup> dec<sup>-1</sup>) 200208 to 202002, positive downward



# Net longwave surface irradiance trend (Wm<sup>-2</sup> dec<sup>-1</sup>) 200208 to 202002, positive downward



GEOS-5.4.1 was used for Aqua only

# Net shortwave surface irradiance trend (Wm<sup>-2</sup> dec<sup>-1</sup>) 200208 to 202002, positive downward



## Sensitivity study using MERRA-2

- To understand regional flux differences from Edition 4.1
  - Edition 4.1 surface fluxes and clouds were derived using GEOS-5.4.1
- Surface fluxes are computed with MERRA-2 using clouds (Terra, Aqua, and GEOS) derived with GEOS-5.4.1 (SYN1deg)
  - fluxes are diurnally averaged
- Surface fluxes are computed with MERRA-2 using clouds (Aqua) derived with GEOS-5.4.1 (CRS)
  - Instantaneous fluxes

# Computed fluxes with MERRA-2 minus computed fluxes with GEOS-5.4.1 GEOS-5.4.1 Terra+Aqua+GEO clouds for both

-13.33

#### Downward longwave

#### **Upward longwave**





#### Downward shortwave

Upward shortwave





#### Instantaneous flux difference Computed flux with MERRA-2 minus computed flux with GEOS-5.4.1 GEOS-5.4.1 Aqua clouds for both



## CERES Aqua FM3 CRS GEOS-5.4.1 minus MERRA-2 - 04/01/2019:00-23h GFOS-5.4.1 minus MERRA-2 - 04/01/2019:00-23h



**Downward Shortwave** 

Aqua only, Spatial difference pattern is similar to SYN1deg (i.e. Terra+Aqua+ GEOs) differences

### Summary

- Surface fluxes computed with MODIS/VIIRS imager based (Terra only, Terra+Aqua, and NOAA20 only) clouds (i.e. no GEOs) using GEOS-5.4.1 and with MERRA-2 temperature and humidity profiles eliminate the effect of GEO artifacts and GEOS-5.4.1 temperature and humidity discontinuities.
  - Aqua only anomaly time series provides reasonable regional trends.

## Backups

## A plan for Edition 4.2 EBAF

- Input: SYN1deg-noGEO (run at DAAC)
  - Production begins early 2022
- Use MERRA-2
  - MERRA-2 MOA (code delivery)
- Terra-only from 03/2000 through 06/2002 (+ 5 to 10 years for climatology)
  - Terra only MATCH
  - Clouds derived from Terra only (TSI) (needs off-line test)
- Terra+Aqua from 07/2002 through 06/2022
  - Terra + Aqua MATCH
  - Clouds derived from Terra+Aqua (TSI)
- NOAA20-only from 07/2022 through 06/2023
  - VIIRS MATCH (NPP or NOAA-20)
  - Clouds derived from NOAA-20 VIIRS

### Sensitivity study results: MERRA-2 vs. GEOS-5.4.1

- Understand TOA and surface flux sensitivity to reanalysis data product used for the flux computations.
  - SARB only: Use clouds derived with GEOS-5.4.1 but compute surface fluxes using MERRA-2
  - Cloud+SARB: Use MERRA-2 for both deriving clouds and computing surface fluxes.
- Produce SYN1deg, SSF, and CRS for April 2019
  - SARB only: SYN1deg (Terra+Aqua+GEO) and CRS
  - Cloud+SARB: SSF, CRS, and SYN1deg
- SARB only (MERRA-2) Edition 4.1 SYN (GEOS-5.4.1)
  - Regional surface flux differences are caused by temperature and humidity differences
- Cloud+SARB (MERRA-2) SARB only (MERRA-2)
  - Regional surface flux differences are caused by cloud differences
  - Analogous to the bias of the Edition 4.2 EBAF case

## Downward longwave sensitivity



Generally, more differences in inputs lead to larger surface irradiance differences

Difference due to inconsistent reanalysis between cloud and SARB SYN1deg (Terra+Aqua+GEOs)

SARB+Cloud (MERRA-2)- SARB only (MERRA-2) surface irradiance difference

Initial SFC Shortwave Down Flux - All-sky (W m-2



### Cloud property differences: MERRA-2 – GEOS-5.4.1

#### Cloud cover (day+night) (%)



Lat,Lon: (-89.35, 163.60) Value = 124.142

#### Cloud Area Fraction - Total clouds, DayNight (%)

#### Visible optical depth (day+night)



#### Cloud top pressure (day+night) (hPa)



#### Cloud Top Pressure - Total clouds, DayNight (hPa)

#### Cloud base pressure (day+night) (hPa)



Lat,Lon: (-89.01, 147.88) Value = 17.795

Cloud Base Pressure - Total clouds, DayNight (hPa)

The use of Terra+Aqua+GEOs for surface irradiance climatology (preliminary results)

# Surface net longwave flux 20208-201807 climatology differences in Wm<sup>-2</sup> ERA5 – Terra+Aqua+GEOs



# Surface net shortwave flux 20208-201807 climatology differences in Wm<sup>-2</sup> ERA5 – Terra+Aqua+GEOs

